```
&option
    tmax=2400.0 ntgraf=5 stepsz=0.750 start=.t. tsave=480.0
    restartFileNumber=1
&earth
    xdip=0.00001 ydip=0.00000 zdip=0.000000 rearth=6.0
         tilt1=-90.0 tilt2=-90.0 tilting =.f.
         rmassq=1. rmassh=1. rmasso=16.
&speeds
    cs inner=0.055 alf inner1=0.177 alf inner2=0.177 alpha e=6.0
        den earth=200. o conc=0.05 gravity=5.0 ti te=5.
        qamma=1.6666 ringo=.f. update=.f. reload=.f.
&windy
    re wind=35. cs wind=0.015 vx wind1=0.40 vx wind2=0.40
    vy wind1=0.000 vy wind2=0.000 vz wind1=-0.00 vz wind2=-0.00
    alfx wind1=0.00005 alfx wind2=0.00005
    alfy wind1=-0.00 alfy wind2=-0.00
    alfz wind1=0.063 alfz wind2=0.063
    den wind1=3.5 den wind2=3.5
    reynolds=12.0 resist=12. rho frac=0.002
    bfrac=1.0 vfrac=1.0
&physical
    re equiv=0.444 b equiv=65.75 v equiv=1000. rho equiv=2.
    spacecraft=.f. warp=.f. utstart=0.0
 &smooth
   chirho=2.0 chipxyz=2.0 chierg=2.0
   difrho=0.005 difpxyz=0.005 diferg=0.005
-36.
       52. -24.
                   24.
                         -24.
                               24. 1.
                                        2
                                                  0
-64.
      112. -48.
                  48.
                         -48
                               48. 2.
                                        3
                                                  1
-120. 232. -96. 96.
                         -96
                               96 4.
                                        4
                                                  2
-160. 544. -192. 192.
                        -192
                             192 8.
                                        0
                                                  3
                                   nbdry
                         ncore
                         m = small
                                        m=biq
                         ncore = big
                                        nbdry=small
Restart from oxz111 for hightime resolution movie
tmax = total duration in sim units - 300 units is about 30 mins
ntgraf is number of graphical outputs per run
stepsz: fraction of the maximum of courant conditions
start: true if initializing a new run
       false if looking up restart data
```

```
tsave: time steps between saving restart data
position of the earth given by xdip, ydip, zdip! don't change
     can't be exactly at a grid point due to dipole approximation
rearth: radius of inner boundary - this with re eqiv sets how many
         earth radii out
dipole tilt : earth magnetic field will tilt from titl1 to tilt2 (in degrees)
     over the sim period (opposite to GSM angle)
tilting true gives varible tilting; false fixed tilt angle
mass different species: q refers to the solar wind
                                        ionospheric ions
                                    heavy ionospheric ions
      rmassq mass of the solar wind ions : 1 for protons
                         ionospheric protons
      rmassh
      rmasso mass of heavy ions : 16 for oxygen
Specification of Earth inner boundary
  cs inner: sound speed at the equator in sim units! code
             automatically makes the polar regions colder than equator
  alf inner: Alfven speed at the equator in sim units! requires
  den earth: equator density in sim unit (use rho equiv to convert to real units
             proton density
  assymteries in in density over polar cap is hard coded as the parameter
            ar iono in code symmetric is
              ar iono=sqrt(xp**2+ay**2+zp**2)
             4 to 1 anisotropy with less density at the equator
              ar_iono=sqrt(xp**2+ay**2+2.*zp**2)
  alpha e don't change - specifies initial falloff of plasmasphere
  O conc percent concentration relative to proton density
  gravity is at inner boundary in m/s/s
  ti te is the ion to electron temperature ratio
  gamma is polytropic index = 5/3
  ringo does not do anything
  update = change zero clock time - false no change
  reload = updates unperturbed quantities used for diffusion for stability of
code
         - least numerical diffusion for true
           but code can be unstable
Solar wind parameters are in windy
 uses user specified quantities if spacecraft = .f. and uses
   spacecraft specifed data if true
```

re_wind is unimportant ! how many grid points in for solar wind start cs_wind sound of wind: not critical all other wind parameters change 1 from 2 over the sim period

Reynolds is grid spacing/ion skin depth (for protons assuming unit sim density)
Resist is collisional reynolds number at the ionosphere
Any small numbers than 12 code tends to go unstable
ideal Ohms law for large Reynolds

rho_frac oxygen density can't be zero anywhere have to put a very small about of O in solar wind

bfrac and vfrac are useless parameters

warp - is want a varaible Bx in IMF requires warped flow of solar wind into system

rho_equiv is in cm^-3
b equiv in nT

t=1 is sec is re_equiv/v_equiv
Utstart is start in real time in UT

Smooth

conditions

standard coeffs for lapidus/local diffusion operators ! don't need to change

Numbers are a grid system for box in box

in grid units

xmin,xmax,ynmin,ymax,zmin,zmax grid spacing ncore nbdry

ncode is the number for the box it will provide inner bndry

ndry box that provides inner boundary conditions

Dimensions of grids in parameter statment in main code (1-nx)

nx=89, ny=49, nz=49, nt=8, ngrd=4, ncraft=4, ncts=1172

number of boxes ngrd

nt = 2*ngrd !required

if you want more boxes change ngrid but need to aslo change occurrences of (4) in

common statements to new number

Fixed spacecraft probes - total number presently set at 4

ncts true	is	the	number	od	data	points	in	spacecraft	data	file	if	spacecraft	is